Tag Archives: attention

Cingulo-opercular Activity Provides Word Recognition Benefit

 

Recognizing speech in challenging listening conditions often produces increased activity in frontal cortex, particularly in cingulo-opercular regions, but the significance of this activity has been unclear.  This network of frontal cortex is thought to monitor performance and signal when cognitive resources are required to ensure successful performance.  Findings from earlier visuospatial studies indicated that cingulo-opercular activity can be predictive of performance on the next trial, so we investigated whether cingulo-opercular activity could also predict word recognition when words were presented in a multi-talker babble.  The results of our fMRI experiment demonstrated that elevated activity in cingulo-opercular cortex provided word recognition benefit on the following trial.  While elevated cingulo-opercular activity was not necessary for word recognition, up to 13% more words were recognized when activity was high compared to when it was low suggesting that elevated activity provided for optimal word recognition.  These results are important because they support the premise that cingulo-opercular activity can enhance ongoing task performance and does not only reflect difficulty or error.  They also suggest the intriguing possibility that we can enhance our performance on a variety of tasks and especially speech recognition by engaging cingulo-opercular cortex.  These findings have been published in the Journal of Neuroscience.

 

Visual System Activity When Listening to Speech: Distracting or Helpful?

Aging is often associated with increased distractibility that may arise from a failure to adequately suppress the processing of irrelevant sensory information. In our recent Cerebral Cortex paper, we show that decreasing word intelligibility was associated with increasing visual cortex activity in younger, middle-aged, and older adults. In addition, age was related visual cortex activity: while younger adults suppressed visual cortex activity during listening, aging was associated with reduced suppression and increasing visual cortex activity. Our findings guide the prediction that both age and listening difficulty impact the likelihood that irrelevant sensory information will be distractible.Alternatively, this change could reflect the engagement of multi-sensory representations to help identify speech in difficult listening conditions.

Age-related differences in auditory gap detection predicted by cognitive processing speed

Changes in auditory temporal processing are thought to be one reason why older adults have difficulty recognizing speech, especially in difficult listening conditions. Dr. Kelly Harris reports in the journal Hearing Research that changes in auditory temporal processing can be explained, in part, by changes in cognitive processing speed. Processing speed is the rate at which people can perform behavioral tasks and has been linked to brain regions important for directing attention. One potential implication of Dr. Harris’ findings is that age-related changes in speech recognition occur, in so far as they are related to auditory temporal processing, because of changes in brain regions important for directing attention.